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I. INTRODUCTION

Orbital-free density functional theory �OF-DFT� is a first-
principles quantum mechanics method that can be formu-
lated to scale linearly with system size.1 By contrast, Kohn-
Sham density functional theory �KS-DFT� �Ref. 2� scales
cubically with size initially and can be made to scale linearly
in the asymptotic limit. The linear scaling within OF-DFT is
achieved by eliminating the fictitious orbitals employed
within KS-DFT, which are invoked to obtain an accurate
estimate of the kinetic energy of the electrons. Instead, OF-
DFT relies upon explicit functionals of the electron density
to compute all energy terms, including the kinetic energy.

OF-DFT is significantly faster than KS-DFT. Currently,
OF-DFT can be used to study samples consisting of tens of
thousands of atoms on a single processor. Unfortunately, this
increase in speed currently comes at a cost in accuracy. The
kinetic energy within KS-DFT is exact in the limit of nonin-
teracting electrons, whereas the form of the OF kinetic en-
ergy density functional �KEDF� is known exactly only for
the uniform electron gas and for a single orbital, and ap-
proximations must be used for all other cases.3 Because of
this limitation, OF-DFT is currently only as accurate as KS-
DFT for main group metals ��10 meV /atom difference�,4
and for some properties of semiconductors.5

In most cases, the most accurate KEDF currently avail-
able is the Wang-Govind-Carter �WGC� KEDF with the
density-dependent response kernel.4 The WGC KEDF is de-
rived from a class of KEDFs that explicitly account for the
linear response of the density of a uniform electron gas sub-
ject to small perturbations in the potential. As a result, these
KEDFs work best for main group, nearly-free-electron-like
metals. This class of KEDF was pioneered by Wang and
Teter �WT�,6 modified by Perrot,7 and Madden and
co-workers,8–10 and generalized by WGC.11 These KEDFs all
rely upon a linear-response kernel derived from a single
fixed reference density. However, WGC introduced an im-
portant advance by accounting for a nonlocal density depen-
dence in the linear-response kernel.4 This density depen-
dence significantly improves upon the WT KEDF in many
cases, particularly for describing vacancies, surfaces, and
equations of state. Some properties of silicon, a representa-
tive covalent semiconductor, are also well described using

two slightly different parameters in the 1999 WGC KEDF.5

However, sufficiently accurate KEDFs have yet to be devel-
oped for localized electron densities present in, e.g., transi-
tion metals,12 or molecules.3 Perhaps unfortunately, the
WGC KEDF is still the most accurate KEDF for condensed
matter to date.4

The kernel of the WGC KEDF is obtained by solving a
second-order differential equation described below. Previous
implementations of the WGC KEDF used a numerical solu-
tion to this differential equation. Here we present an analytic
solution, which offers several advantages over the numerical
solution, in our new software PROFESS �PRinceton Orbital-
Free Electronic Structure Software�.1 First, the kernel can be
computed on the fly for any given system using the analytic
solution and stored on a grid with the appropriate mesh spac-
ing. A numerical solution inevitably requires interpolation.
Second, parameters in the kernel are simple to adjust in the
analytic solution, requiring no extra effort. In a numerical
implementation, one has to compute and store a different
solution for every set of parameters. Third, knowledge of the
analytic solution, which has not been reported previously,
makes it possible to derive the WGC KEDF in real space, in
order to perform accurate OF-DFT calculations under Di-
richlet �fixed� boundary conditions as opposed to periodic
boundary conditions �PBCs�. Dirichlet boundary conditions
allow the study of aperiodic or isolated systems, such as a
dislocation, grain boundary, or crack in a bulk material or a
nanostructure �e.g., quantum dot or wire�, without periodic
image artifacts inherent with periodic boundary conditions.

In what follows, we first derive the analytic form of the
kernel used in the WGC KEDF. With this in hand, we present
our implementation of the WGC KEDF under Dirichlet
boundary conditions, which maintains near-linear O(N lnN)
scaling of the computation time with respect to system size.
We validate our approach on the following test cases: a
single aluminum atom in a vacuum, a cluster of 14 aluminum
atoms in vacuum, and a cluster of 108 aluminum atoms ar-
ranged in a face-centered-cubic orientation without vacuum,
but with the values of the electron density at the boundaries
specified to be the same as in bulk fcc aluminum.

II. ANALYTIC FORM OF THE WGC KEDF

The linear-response term in the WGC KEDF with the
density-dependent kernel can be written as4
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TWGC
�,�,���� = CTF����r���w�,�„���r�,r���,r� − r��…����r���� , �1�

where CTF= 3
10�3�2�1/3, w�,� is the WGC kernel in real space,

and

���r�,r��� = 	 kF
��r�� + kF

��r���
2


1/�

�2�

is a nonlocal two-body Fermi wave vector, and kF�r��
= �3�2��r���1/3 is the local one-body Fermi wave vector. The
set of parameters �� ,� ,�� can be adjusted to optimize the
performance of the functional, and the best choices are some-
what dependent on the identities of the atoms in the system.
Universal values of � and � have been derived by
asymptotic analysis, based on linear-response theory applied
to the uniform electron gas.4,11

Unfortunately, Eq. �1� contains density-dependent terms
in the kernel, and straightforward application of the convo-
lution theorem using fast Fourier transforms to achieve linear
scaling is not possible. However, Wang et al.4 showed that
the density dependence may be factored out using a Taylor
series expansion. As long as the electron density in the sys-
tem is sufficiently close to the reference density employed,
the Taylor expansion is a good approximation to the WGC
kernel. Since the explicit density dependence is factored out
of the kernel by use of this Taylor expansion around a con-
stant reference density, the convolution theorem can be used
again, allowing quasilinear scaling. Unfortunately, this ex-
pansion can be carried out to only second order, because
higher-order terms �involving the third and higher deriva-
tives of the kernel� diverge due to the logarithmic singularity
of the Lindhard function13 from which the WGC kernel is
derived.4

By enforcing the exact linear response at the uniform
electron-gas limit,4 one finds that w�,�(���r� ,r��� ,r�−r��) is
given by the solution of the following universal second-order
differential equation in reciprocal space for every value of q�:

��� �2w̃�,�,�� ��� ,�0� + �� + 1 − 6�� + ������ �w̃�,�,�� ��� ,�0�

+ 36��w̃�,�,���� ,�0� = 20G��� ��0
5/3−��+��, �3�

where �� =q� /2kF, q� is the momentum,w̃�,�,� is the Fourier
transform of the kernel w�,� for a uniform density �0, w̃�,�,��
and w̃�,�,�� are its first and second derivatives with respect to
��� �, respectively, �0 is the system’s average electron density,
and the expression for G��� is given elsewhere.4 Once the
solution to Eq. �3� is obtained, the Taylor expansion can be
evaluated using previously reported identities.4

Again, although w̃�,�,� and its derivatives can be solved
numerically, a new numerical solution would have to be ob-
tained every time the parameters �, �, or � are changed. In
addition, a numerical solution that is expressed at fixed val-
ues of �� and then read from a file may suffer from interpo-
lation errors if the numerical solution is not dense enough in
�� . Thus, it is desirable to compute w̃�,�,� analytically.

The analytic solution to the differential equation shown in
Eq. �3� can be written as

w̃�,�,���� ,�0� = H��� ,�0� + P��� ,�0� , �4�

where H��� � is the homogenous solution and P��� � is the par-
ticular solution.

It can be shown that the homogenous solution has the
form

H��� ,�0� = �C1��� �u+�v + C2��� �u−�v, v � 0

��� �u�C2 ln��� � + C1� , v = 0

��� �u�C1 cos��− v ln��� �� + C2 sin��− v ln��� ��� , v 	 0,

 �5�

where

C1 = �0, u � 0 and ��� � � 1

0, u 	 0 and ��� � 	 1;

c1 otherwise,

c1 = �

u

�u�
���v − u�Sd + Ss� , v � 0

u

�u�
Sd, v 
 0,


C2 = �0, u � 0 and ��� � � 1

0, u 	 0 and ��� � 	 1;

c2 otherwise,

c2 =�

u

�u�
1

2�v
���v + u�Sd − Ss� , v � 0

u

�u�
�Ss − uSd� , v = 0

u

�u�
1

�− v
�Ss − uSd� , v 	 0,


 �6�

Sd = �
i=0

� 	 �Ai

�u + 2i�2 − v
−

�Bi

�u − 2i�2 − v

 , �7�
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Ss = �
i=1

� 	 − 2i�Ai

�u + 2i�2 − v
−

2i�Bi

�u − 2i�2 − v

 , �8�

and

Ai = �0, i = − 1

a0 − 1, i = 0

ai, i � 0,

and ai = �3, i = − 1

− 3	 �
j=−1

i−1
aj

4�i − j + 1�2 − 1
 , i � − 1,
 �9�

Bi = �0, i = 0

b1 − 3, i = 1

bi, i � 1,

and bi = �1, i = 0

�
j=0

i−1
bj

4�i − j�2 − 1,
i � 0.
 �10�

Here,

u = 3�� + �� −
�

2
, �11�

v = u2 − 36�� , �12�

and

� = 20�0
5/3−��+�� �13�

are constants that depend only on the value of the parameters
�� ,� ,��.

The form of the particular solution depends on the value
of ��� � as follows:

P��� ,�0� = ���
i=1

�
Bi��� �2i

�u − 2i�2 − v
, ��� � 	 1

��
i=0

�
Ai��� �−2i

�u + 2i�2 − v
, ��� � � 1,
 �14�

This analytic form of the WGC kernel in reciprocal space
and its analytic derivatives with respect to ��� � are displayed
in Fig. 1. The kernel is normalized to zero at ��� �=0 and its
asymptotic limit at large ��� � is −8 /5. The logarithmic singu-
larity in the Lindhard response function at ��� �=1 is visible in
the discontinuous behavior of the second derivative function
ṽ�,�,�. This discontinuity makes it impossible to extend the
Taylor expansion of the kernel beyond second order.

III. WGC KEDF UNDER DIRICHLET BOUNDARY
CONDITIONS

Under periodic boundary conditions �and using the Taylor
expansion�, the convolution theorem can be used to evaluate
Eq. �1�. Therefore, w̃�,�,� and its derivatives are needed only
in reciprocal space and need never be obtained in real space.
However, an extra step is needed in order to evaluate the
WGC KEDF �Eq. �1�� within Dirichlet boundary conditions.
Instead of using standard convolutions, a real-space convo-
lution �also known as the Hockney method� must be

used.14,15 Since the real-space convolution requires one to
start with the kernel in real space and then to construct a
circulant kernel based on it, the WGC kernel and its deriva-
tives with respect to ��� � must be obtained in real space. A
variation of the strategy detailed in Ref. 14 that was used to
transform the density-independent Wang-Teter kernel16 into
real space can be adapted to do this. We describe the method
in detail here as it pertains to the WGC kernel.

In principle, the Fourier-Bessel transform should be used
to obtain the kernel in real space,

w�,�,��r� − r��,�0� =
1

2�2�
0

�

w̃�,�,���� ,�0��q� �2
sin��q� ��r� − r����

�q� ��r� − r���
d�q� � .

�15�

However, since the WGC kernel dies off as 1 / ��� �2 as ��� �
→�, the integrand here is long ranged. Therefore, this trans-

FIG. 1. �Color online� The analytic Wang-Govind-Carter kernel
w̃�,�,���� ,�0� �Eqs. �4�–�14�� and its derivatives ũ�,�,���� ,�0�
= ��� �w̃�,�,�� ��� ,�0� and ṽ�,�,���� ,�0�= ��� �2w̃�,�,�� ��� ,�0� for �0

=0.183 /Å3, �� ,��=5 /6
�5 /6, and �=2.7.
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form is difficult to perform in a straightforward fashion. In-
stead, it is convenient to break up the kernel into three parts,

w̃�,�,���� ,�0� = w̃�,�,�
I ��� ,�0� + w̃�,�,�

II ��� ,�0� + w̃�,�,�
III . �16�

Here w̃�,�,�
II ��� ,�0� approximates the asymptotic behavior of

the kernel with an analytic function �within an additive con-
stant w̃�,�,�

III �, which can be transformed analytically. The
transform of the constant w̃�,�,�

III is simply ��r�−r���w�,�,�
III

where ��r�−r��� is the Dirac delta function. The remaining
part w̃�,�,�

I ��� ,�0� will be short ranged in �� , and therefore is
easy to transform numerically.

We first fit the long-range behavior of w̃�,�,� to the func-
tion

w̃�,�,�
II ��� � =

A��� �2

��� �4 + B��� �2 + B2 , �17�

where A and B are constants to be determined. In order to do
this, the long-range behavior of w̃�,�,� in Eq. �4� must first be
analyzed. As ��� �→�,

w̃�,�,� → ��
i=0

�
Ai��� �−2i

�u + 2i�2 − v
+ H��� � . �18�

Two possible cases exist: u�0 and u
0. However, when
u�0 and ��� �→�, C1=C2=0 and H��� �=0 �Eqs. �5� and �6��.
This simplifies considerably the rest of our analysis for the
u�0 case, which thus can be written as

w̃�,�,� → ��
i=0

�
Ai��� �−2i

�u + 2i�2 − v
, u � 0. �19�

Fortunately, one constraint on the values of � and � is that
�+�= 5

3 , which is meant to ensure that the total kinetic en-
ergy functional reduces to the correct large-q� limit.4 By im-
posing this constraint, Eq. �11� implies that u
0 only if �
�10. However, optimal values of � for real materials have
been determined to be much smaller than 10 �for Al and Si,
�=2.7 and 3.6 are optimum, respectively,4,5 although there is
recent evidence that �=4.2 may in fact be a superior choice
for Si �Ref. 17��. Therefore, for simplicity, throughout the
rest of this paper we will assume that u�0. Extension of the
method to cases where u
0 is a straightforward but some-
what tedious endeavor.

Writing out the terms from Eq. �19� as ��� �→�,

w̃�,�,� →
�A0

u2 − v
+

�A1

�u + 2�2 − v
� 1

��� �2� +
�A2

�u + 4�2 − v
� 1

��� �4�
+ O�	

1

��� �4� . �20�

Carrying out long division in Eq. �17� and matching terms of
the same order in ��� �, appropriate values for w̃�,�,�

III , A, and B
are determined to be

w̃�,�,�
III =

�A0

u2 − v
, A =

�A1

�u + 2�2 − v
, B = −

�A2��u + 2�2 − v�
A1��u + 4�2 − v�

. �21�

The three panels of Fig. 2 show that the asymptotic behavior
of w̃�,�,� and its derivatives is indeed captured successfully
with w̃�,�,�

II ��� ,�0� and w̃�,�,�
III using the above parameters.

w̃�,�,�
I ��� ,�0� is then obtained numerically from

w̃�,�,�
I ��� ,�0� = w̃�,�,���� ,�0� − w̃�,�,�

II ��� ,�0� − w̃�,�,�
III , �22�

where w̃�,�,���� ,�0� is derived analytically via Eq. �4�.
At this point, the kernel w̃�,�,���� ,�0� has been decom-

posed into components as in Eq. �16�. To obtain the trans-
form of w̃�,�,���� ,�0� into real space, we simply transform
each component individually. Although the goal is to even-
tually obtain the transform from �q� � space to �r�−r��� space, it
is convenient to first perform the transform from ��� � space to

��� � space, where �� =2kF�r�−r��� is a dimensionless length in
real space, in order to simplify bookkeeping during the ana-
lytical transform of Eq. �17�. Then, a change of variables can
be performed to obtain the result of the transform from �q� �
space to �r�−r��� space.

We use a Fourier-Bessel transform to take w̃�,�,�
I ��� ,�0�

numerically from ��� � space to ��� � space to obtain

w�,�,�
I ��� ,�0�. Figure 3 displays the transformed kernel

w�,�,�
I ��� ,�0� and its derivatives as a function of the dimen-

sionless real-space variable ��� �. w�,�,�
I ��� ,�0� is smooth and

fairly short ranged compared to its second derivative, which
is long ranged and oscillatory.

w̃�,�,�
II ��� ,�0� can be transformed analytically from ��� �

space to ��� � space via the residue theorem18 to obtain14

w�,�,�
II ��� ,�0� =

A

4�

1

��� �
e−��� ���B�/2	 cos��3��B���� ��

2

+
�3

3

sin��3��B���� ��
2


 . �23�

The transform of w̃�,�,�
II ��� ,�0� �as well as its derivatives with

respect to ��� �� is displayed in Fig. 4. Note that the trans-

formed kernel diverges at small ��� �, but dies off very quickly

as ��� � increases.
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The singularity in w�,�
II ��� ,�0� as ��� �→0 can cause numeri-

cal instabilities. This can be circumvented by adding and

subtracting a factor of 1 / ��� �,14

w�,�,�
II ��� ,�0� = � A

4�

1

��� �
� +

A

4�

1

��� �
�e−��� ���B�/2	 cos��3��B���� ��

2

+
�3

3

sin��3��B���� ��
2


 − 1� . �24�

The first term �a simple 1 / ��� � interaction� then can be treated
as a multiple of the Coulomb kernel and now the second
term no longer contains the singularity.

Putting it all together, the complete expression for the
kernel of the WGC functional in real space is

FIG. 2. �Color online� Plots of a function w̃�,�,�
II ��� ,�0� �Eq.

�17�� designed to capture the decay of the WGC kernel and its
derivatives �dashed� overlaid on the WGC kernel �Eqs. �4�–�14��
and its derivatives �solid�.

(a)

(b)

FIG. 3. �Color online� Fourier transform to ��� � space of the
short-range component �originally in ��� � space, Eq. �22�� of the
kernel for the WGC KEDF. These parts of the kernel are Fourier

transformed numerically. �a� w�,�,�
I ��� ,�0�, u�,�,�

I ��� ,�0�, and

v�,�,�
I ��� ,�0�. �b� Blowup of w�,�,�

I ��� ,�0�.

ANALYTIC FORM FOR A NONLOCAL KINETIC ENERGY… PHYSICAL REVIEW B 78, 045105 �2008�

045105-5



w�,�,���� ,�0� = w�,�,�
I ��� ,�0� + � A

4�

1

��� �
� +

A

4�

1

��� �

��e−��� ���B�/2	 cos��3��B���� ��
2

+
�3

3

sin��3��B���� ��
2


 − 1� +
�A0

u2 − v
���� � ,

�25�

where � is the Dirac delta function. As expected, the kernel

and its derivatives diverge at small ��� � and are oscillatory at
long range �Fig. 5�. With the Fourier-Bessel transform of

w̃�,�,� from ��� � to ��� � in hand, it is straightforward to trans-
form w̃�,�,� from �q� � to �r�−r��� in order to obtain w�,�,��r�
−r���. This is done with a simple change of variables from
Eq. �25� as follows:

w�,�,��r� − r��,�0� = �2kF�3w�,�,�
I �2kF�r� − r���,�0� +

AkF
2

��r� − r���

+
AkF

2

��r� − r���
� �e−kF�r�−r�����B�

�	 cos�2�3kF
��B��r� − r����
2

+
�3

3

sin�2�3kF
��B��r� − r����
2


 − 1�
+

�A0

u2 − v
��r� − r��� . �26�

Finally, if ũ�,�,���� ,�0�= ��� �w̃�,�,�� ��� ,�0� and ṽ�,�,���� ,�0�
= ��� �2w̃�,�,�� ��� ,�0�, one may obtain u�,�,��r�−r�� ,�0� and
v�,�,��r�−r�� ,�0� by taking derivatives of Eq. �20� and repeat-
ing the above analysis using the variables u and v in place of
w. One finds that both of these expressions take the form of
Eq. �26�, the only difference being in the values of A and B.
For u�,�,��r�−r�� ,�0�, one simply substitutes A� for A and B�
for B, where A�=−2A and B�=2B. For v�,�,��r�−r�� ,�0�, one
substitutes A� for A and B� for B, where A�=6A and B�
= 10

3 B.

IV. RESULTS

We first examine a system consisting of a single alumi-
num atom under free space boundary conditions �Dirichlet
boundary conditions with the value of the electron density at
the boundaries specified to be zero� using the local-density
approximation �LDA� exchange-correlation functional,19,20

FIG. 4. �Color online� Fourier transform to ��� � space of the
long-range components �originally in ��� � space� of the kernel for the

WGC KEDF �Eq. �23��. w�,�,�
II ��� ,�0�, u�,�,�

II ��� ,�0�, and

v�,�,�
II ��� ,�0� are displayed; these parts of the kernel are transformed

analytically.

(a)

(b)

FIG. 5. �Color online� �a� Total w�,�,���� ,�0�, u�,�,���� ,�0�, and

v�,�,���� ,�0�. �b� Semilogarithmic plot of the absolute values of total

w�,�,���� ,�0�, u�,�,���� ,�0�, and v�,�,���� ,�0�, showing the rate of
decay of the long-range oscillations.
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sixth-order discretization of the von Weiszäcker �vW�
KEDF,21 and the WGC KEDF with the parameters �, �, and
� set to the previously determined optimal values for bulk
fcc Al: �� ,��= �5
�5� /6; �=2.7.4 Since the Goodwin
pseudopotential used for aluminum was parameterized on
bulk Al, using it for an isolated atom is not scientifically
valid. However, it is a useful numerical test. A minimum of
7.5 Å of vacuum on each side of the atom is required to
converge the energy to within 1 meV/atom. A grid point
density of 13 grid points /Å on each side is also required to
converge the energy to within 1 meV/atom.

After electron density optimization using the truncated
Newton method, the total energy for the isolated atom under
Dirichlet boundary conditions was −55.757 eV /atom. When
the same system �using the same grid point density� was
optimized under PBCs, a total energy of −55.740 eV /atom
was obtained �a 0.02 eV/atom difference�.

Next, we examine a cluster of 14 aluminum atoms ar-
ranged in an fcc configuration within a cube of dimensions
4.032�4.032�4.032 Å3. The cluster is then suspended in
vacuum. At least 7.5 Å of vacuum from each face of the
cluster to the boundary is needed to converge the total energy
to 1 meV/atom. A grid point density of 13 grid points /Å on
each side again is required to converge the energy to within
1 meV/atom. Under Dirichlet boundary conditions, density
optimization results in a total energy of −57.167 eV /atom.
The identical system under PBCs yields an energy of
−57.143 eV /atom, which is again a 0.02 eV/atom differ-
ence. The 0.02 eV/atom difference simply may be due to
image effects remaining in the PBC case.

Finally, we turn our attention to a cubic cluster of 108
aluminum atoms arranged in an fcc configuration with a lat-
tice constant of 4.032 Å. Here we wish to emulate a bulklike
environment for the cluster. To this end, we use as an initial
guess an optimized electron density associated with periodic
bulk fcc Al, shown in Fig. 6�a�. Then, having fixed the elec-
tron density at the boundary to these bulk values, we opti-
mize the electron density in the interior of the cell subject to
these Dirichlet boundary conditions. The fully optimized
density is shown in Fig. 6�b�. Eventually, if PROFESS is to be
used as part of a multiscale model, these boundary condi-
tions may be passed down from a larger length scale calcu-
lation. Figure 6 displays the initial guess density described
above and the optimized electron density from a cut through
an atomic plane in the center of the 108-atom cluster. Due to
possible artifacts in fourth- and sixth-order discretization,21

we use second-order discretization for the vW KEDF. These
artifacts may be due to the asymmetric stencils used in the
fourth- and sixth-order discretization of the Laplacian opera-
tor. If so, this problem can be overcome by simply adding
more layers of fixed boundary values of the electron density
around the system, which will allow centered stencils always
to be used for higher-order discretization.

The difference between the periodic bulk density in Fig.
6�a� and the optimized density in Fig. 6�b� is shown in Fig.
6�c�. It is evident that the optimized electron density around
the interior atoms is essentially identical to the shape of the
electron density around the atoms in the bulk crystal. Only
the first layer of atoms at the border shows a significant local
perturbation of the electron density. This suggests that the

(a)

(b)

(c)

FIG. 6. �Color online� Periodic bulk fcc Al �a� initial guess and
�b� optimized electron densities �number of electrons per cubic
bohr� from a cut through an interior atomic plane of a 108-atom
cluster using the WGC KEDF and second-order discretization under
Dirichlet boundary conditions, with values at the boundary fixed at
those optimum for bulk fcc Al. �c� Difference between the electron
densities of �a� and �b�. Nuclear positions ��� are marked for all
in-plane Al nuclei.
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implementation of the WGC KEDF under Dirichlet bound-
ary conditions is consistent with its implementation under
periodic boundary conditions. The small density mismatch
near the edge of the cell in this test case is to be expected,
since the nonlocal and long-range terms in OF-DFT �electro-
static and the WGC KEDF� require density data beyond the
edge of the cell in order to reproduce the full periodic den-
sity. Larger clusters can be expected to recover the bulk elec-
tron density from the KEDF as the distance from the interior
atoms to the boundaries increases, but such studies require a
parallel version of PROFESS that makes more efficient use of
memory. Alternatively, an embedding or padding atom ap-
proach can be taken to allow the nonlocal, long-range terms
to be accounted for correctly up to the edge of the system of
interest.22

V. SUMMARY AND CONCLUSIONS

In this paper, we have demonstrated how the nonlocal,
double-density-dependent WGC functional can be derived
analytically under periodic boundary conditions by directly
solving the second-order differential equation for the terms
in the WGC kernel. We have also shown how the WGC
KEDF can be implemented under Dirichlet boundary condi-
tions without resorting to approximations of the WGC
kernel.

We validated our implementation of the WGC KEDF un-
der Dirichlet boundary conditions by comparing to the same

system under periodic boundary conditions with respect to a
single aluminum atom and a 14-atom cluster of aluminum
atoms. However, in order to interrogate large isolated sys-
tems, an efficient parallel implementation of the program is
needed, since 14-atom clusters are the largest isolated clus-
ters that can currently be studied on a single processor with 4
Gbytes of memory.

In isolated clusters, a large part of the system necessarily
consists of vacuum so that the electron density may decay
naturally to zero at the boundaries. This adds great cost to the
calculation. However, an embedded system with nonzero
boundary conditions requires no such vacuum region, allow-
ing up to 108 atoms to be studied. Thus, we demonstrated the
ability of the WGC KEDF to handle nonzero values at the
boundaries �deriving the boundary conditions from a peri-
odic calculation� by studying a 108-atom cluster of alumi-
num atoms. This ability to properly handle nonzero boundary
conditions will be necessary if OF-DFT is to be incorporated
into a multiscale model that explicitly resolves the solution
down to atoms in regions that require it.
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